Asymptotic behaviour of the marginal likelihood integral for general Markov models

Piotr Zwiernik
IPAM \rightarrow TU Eindhoven

(With special thanks to Shaowei Lin.)

Singular Learning Theory,
AIM, Palo Alto, 13 Dec 2011
Outline of the talk

- The asymptotic behavior of the marginal likelihood integral and the real log-canonical threshold.
- The real log-canonical threshold for general Markov models.
 - q-fibers for (binary) general Markov models.
 - Polyhedral geometry for the deepest singularity.
Discrete algebraic statistical model

- random variable: \(X \in \mathcal{X}, |\mathcal{X}| < \infty, p = (p_x)_{x \in \mathcal{X}} \)

- probability simplex: \(\Delta_{|\mathcal{X}|-1} = \{p \in \mathbb{R}^\mathcal{X} : \sum_{x \in \mathcal{X}} p_x = 1, p_x \geq 0\} \)

- model: \(p : \Theta \rightarrow \Delta_{|\mathcal{X}|-1}, \mathcal{M} = p(\Theta), p \) polynomial map

- the true distribution of \(X \): \(q \in \Delta_{|\mathcal{X}|-1} \)
Asymptotics of the marginal likelihood

- random sample: \(X^{(N)} = (X^1, \ldots, X^N) \)

- marginal likelihood: \(Z_N = \int_{\Theta} L(\theta; X^{(N)}) \psi(\theta) d\theta \)

- stochastic complexity: \(F_N = - \log Z_N; \) entropy:
 \(S = - \sum_{x \in \mathcal{X}} q_x \log q_x \)

Bayesian Information Criterion (BIC)

- If \(p^{-1}(q) = \hat{\theta} \) lies in the interior of \(\Theta \) and the Jacobian of \(p \) has full rank then, as \(N \to \infty \),
 \[
 \mathbb{E}F_N = NS + \frac{d}{2} \log N + O(1).
 \]
Kullback-Leibler distance: \(K(\theta) = \sum_{i=1}^{m} q_i \log \frac{q_i}{p_i(\theta)} \)
- \(K(\theta) \geq 0 \) on \(\Theta \)
- \(K(\theta) = 0 \) only if \(p(\theta) = q \)

Zeta function on \(\mathbb{C} \):
\[
\zeta(z) = \int_{\Theta} K(\theta)^{-z} \psi(\theta) d\theta
\]
- real log-canonical threshold: \(\text{rlct}_{\Theta}(K; \psi) \) is the smallest pole of \(\zeta \)
- its multiplicity: \(\text{mult}_{\Theta}(K; \psi) \)

Theorem
- With some compactness assumptions, as \(N \to \infty \) then
\[
\mathbb{E} F_N = NS + \text{rlct}_{\Theta}(K; \psi) \log N + (\text{mult}_{\Theta}(K; \psi) - 1) \log \log N + O(1)
\]
Asymptotics and q-fibers

- $\text{RLCT}_\Theta(K) = \min_{\theta \in \Theta_0} \text{RLCT}_{\Theta_0}(K)$
 - important distinction: if W_0 neighbourhood of θ_0 in \mathbb{R}^d then $\text{RLCT}_{W_0}(K) = \text{RLCT}_{\Theta_0}(K)$
- $\text{RLCT}_\Theta(K(\theta)) = \text{RLCT}_{\Theta}(\sum_{x \in X} (p_x(\theta) - q_x)^2)$
- q-fiber: $\hat{\Theta} = p^{-1}(q)$
- $\theta_0 \notin \hat{\Theta} \implies \text{rlct}_{\theta_0}(\sum_{x \in X} (p_x(\theta) - q_x)^2) = \infty$
The binary tripod tree model

- \(X_1 \perp \perp X_2 \perp \perp X_3 \mid H \) or
- a Bayesian network a tripod tree
- seven free parameters
- the codimension is zero
Central moment parametrization

\[\mathcal{M}_T : \]

\[\mu_{12} = \frac{1}{4} (1-s^2) \eta_1 \eta_2, \]

\[\mu_{13} = \frac{1}{4} (1-s^2) \eta_1 \eta_3, \]

\[\mu_{23} = \frac{1}{4} (1-s^2) \eta_2 \eta_3, \]

\[\mu_{123} = \frac{1}{4} (1-s^2) s \eta_1 \eta_2 \eta_3 \]
Finite q-fibers

\[
\mu_{123}^2 + 4\mu_{12}\mu_{13}\mu_{23} = \left(\frac{1}{4}(1 - s^2)s\eta_1\eta_2\eta_3\right)^2 + 4\left(\frac{1}{4}(1 - s^2)\right)^3(\eta_1\eta_2\eta_3)^2
\]

\[
= \left(\frac{1}{4}(1 - s^2)\eta_1\eta_2\eta_3\right)^2(s^2 + 1 - s^2) = \left(\frac{1}{4}(1 - s^2)\eta_1\eta_2\eta_3\right)^2
\]

\[
\frac{\mu_{123}^2}{\mu_{123}^2 + 4\mu_{12}\mu_{13}\mu_{23}} = \frac{\left(\frac{1}{4}(1 - s^2)s\eta_1\eta_2\eta_3\right)^2}{\left(\frac{1}{4}(1 - s^2)\eta_1\eta_2\eta_3\right)^2} = s^2
\]

\[
\frac{\mu_{123}^2 + 4\mu_{12}\mu_{13}\mu_{23}}{\mu_{23}^2} = \frac{\left(\frac{1}{4}(1 - s^2)\eta_1\eta_2\eta_3\right)^2}{\left(\frac{1}{4}(1 - s^2)\eta_2\eta_3\right)^2} = \eta_1^2, \text{ and so on}
\]

\[
\text{well defined for } q \in \mathcal{M}_T \text{ such that } \mu_{12}\mu_{13}\mu_{23} \neq 0
\]
Submodels and singularities

(draw four models,
show that the fiber for $X_1 \perp \perp X_2 \perp \perp X_3$ is a union of affine spaces)
Asymptotics for GMMs

The case of zero covariances

Sketch picture

\[\mathcal{M}_T \]

\[\Omega_T \]

Asymptotic behaviour of the marginal likelihood integral for general Markov models
This generalizes

\((X_1, \ldots, X_n) \in \{0, 1\}^n\) represented by leaves of \(T\)
The general case

- Let $q \in \mathcal{M}_T$ and $\Sigma = [\mu_{ij}]_{i,j \in [n]}$ the covariance matrix.
- The asymptotics of $E F_N$ determined by zeros in Σ (marginal independencies).
General formula

Theorem [Z.]

- If \(p^{-1}(q) \) is a manifold with corners (there are no degree zero nodes) then, as \(N \to \infty \),

\[
\mathbb{EF}_N = NS + \frac{1 + 2|E| - 2l_2}{2} \log N + O(1).
\]

- For trivalent trees

\[
\mathbb{EF}_N = NS + \left(\frac{1 + 2|E| - 2l_2}{2} - \frac{5l_0}{4} \right) \log N - c \log \log N + O(1),
\]

where \(c \) is a nonnegative integer. Moreover \(c = 0 \) always if either both \(r \) is nondegenerate or if \(r \) and all its neighbors are degenerate.
Step 1: Reparametrization

- tree cumulants: \(\kappa = (\kappa_I)_{I \subseteq [n], I \neq \emptyset}, \omega = ((s_v)_{v \in V}, (\eta_e)_{e \in E}) \)

\[
\Theta_T \xrightarrow{p} \Delta_{2^n - 1} \\
\Omega_T \xrightarrow{\psi_T} \mathcal{K}_T \\
f_{\omega\theta} \downarrow f_{\theta\omega} \quad f_{\kappa p} \quad f_{p\kappa} \downarrow
\]

- \(\kappa_I(\omega) = \frac{1}{4}(1 - s_{r(I)}^2) \prod_{v \in N(I)} s_v^{\deg(v) - 2} \prod_{e \in E(I)} \eta_e, \) for \(I \subseteq [n], |I| \geq 2. \)

\[
\text{RLCT}_{\Theta_T}(\sum_x (p_x(\theta) - q_x)^2) = \left(\frac{n}{2}, 0 \right) + \text{RLCT}_{\Omega_T}(\sum_{|I| \geq 2} (\kappa_I(\omega) - \hat{\kappa}_I)^2)
\]

Asymptotic behaviour of the marginal likelihood integral for general Markov models
Step 2: The main reduction

- note: if T is trivalent then T_1, \ldots, T_k are trivalent

Asymptotic behaviour of the marginal likelihood integral for general Markov models
The deepest singularity

- let \(\hat{\kappa}_{ij} = 0 \) for all \(i, j \in [n] \) (then \(\hat{\kappa}_I = 0 \) for all \(I \subseteq [n] \))

- \(\text{RLCT}_{\omega_0} (\sum_I (\kappa_I(\omega) - \hat{\kappa}_I)^2) = \text{RLCT}_{\omega_0} (\sum_{i,j \in [n]} \kappa_{ij}^2(\omega)) \) for \(\omega_0 \in \hat{\Omega} \).

- the \(q \)-fiber is given by a union of affine subspaces with non-empty common intersection denoted by \(\hat{\Omega}_{\text{deep}} \)

- \(\text{RLCT}_{\omega_0}(K) \leq \text{RLCT}_{\omega}(K) \) for every \(\omega \in \Omega \) and \(\omega_0 \in \hat{\Omega}_{\text{deep}} \)
The monomial case

- if $\omega_0 \in \hat{\Omega}_{\text{deep}}$ then

$$\text{RLCT}_{\omega_0}(\sum_{i,j\in[n]} \kappa_{ij}^2(\omega)) = \text{RLCT}_0(\sum_{i,j\in[n]} m_{ij}^2(\omega)),$$

where $m_{ij}(\omega) = s_{r(ij)} \prod_{e \in E(ij)} \eta_e$

- e.g. (quartet)

$$m_{12} = s_a \eta_{a1} \eta_{a2}, \quad m_{13} = s_a \eta_{a1} \eta_{ab} \eta_{b3} \quad \text{and} \quad m_{34} = s_b \eta_{b3} \eta_{b4}$$
Theorem

Let $f(x) = \sum_\alpha c_\alpha x^{2\alpha}$ and $\Gamma_+ = \text{conv}(2\alpha : c_\alpha \neq 0) + \mathbb{R}_+^n$.

Then $\text{RLCT}_0(f) = (\frac{1}{t}, c)$, where and t be the smallest such that $(t, \ldots, t) \in \Gamma_+$ and c is the codimension of the face hit by (t, \ldots, t).
rlct from the Newton diagram

- coordinates of the ambient space: $(x_e), (y_v)$
- distinguished facet: $\sum_{e \in E_{term}} x_e \geq 4$

show $\text{rlct}_0(\sum_{ij} m_{ij}^2) = \frac{n}{4}$ by:

- note $t < \frac{4}{n}$ then $(t, \ldots, t) \notin \Gamma_+$
- constructing a point $P \in \Gamma_+$ such that $P \leq \frac{4}{n} 1$

idea: for $n = 4$

$2 \cdot (2, 0; 2, 2, 0, 0, 0)$ and $2 \cdot (0, 2; 0, 0, 0, 0, 2, 2)$ gives

$P = \frac{1}{4} (4, 4; 4, 4, 0, 4, 4) \leq (1, 1; 1, 1, 1, 1, 1, 1)$.

Asymptotic behaviour of the marginal likelihood integral for general Markov models
for $n = 5$

gives $\frac{1}{5} (4, 4, 2; 4, 4, 0, 4, 4, 4, 4) \leq \frac{4}{5} 1$.
Conclusions and remarks

- Understanding of q-fibers is essential
- In our case the degenerate cases corresponded to graphical submodels
- Tree remains important even for the Newton diagram method.

- Generalization to Gaussian models