Logical Induction

Scott Garrabrant, Tsvi Benson-Tilsen, Andrew Critch, Nate Soares, Jessica Taylor

Machine Intelligence Research Institute (scott|tsvi|critch|nate|jessica)@intelligence.org

Aug 6, 2016

```
This talk is based on our paper,

http://arXiv.org/abs/1609.03543/

which will be updated more frequently at

https://intelligence.org/files/LogicalInduction.pdf
```

```
These slides will be available at:
https://intelligence.org/seminar-f2016/
and possibly in a more updated form at:
http:/acritch.com/research/
```

Overview

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- 5 Conclusions (PowerPoint)

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- 5 Conclusions (PowerPoint)

- $\mathcal{L} := a$ language of propositional logic, including connectives \neg , \land , \lor , \rightarrow , \leftrightarrow , for constructing proofs using modus ponens.
- S := all sentences expressible in \mathcal{L} .
- $\Gamma := a$ set of **axioms** in S for encoding and proving statements about variables and computer programs (e.g. First Order Logic + Peano Arithmetic).
- a **belief state** := a map $\mathbb{P}: \mathcal{S} \to [0,1]$ that is constant outside some finite subset of S.
- ullet a **reasoning process** $\overline{\mathbb{P}}:=\mathsf{a}$ computable sequence of belief states $\{\mathbb{P}_n: L \to [0,1]\}$.

We can now state some properties that we think a "good reasoning process" should satisfy.

- A "good" reasoning process $\overline{\mathbb{P}}$ should satisfy:
 - **(computability)** There should be a Turing machine which computes $\mathbb{P}_n(\phi)$ for any input (n, ϕ) .
 - **① (convergence)** The limit $\mathbb{P}_{\infty}(\phi) := \lim_{n \to \infty} \mathbb{P}_n(\phi)$ should exist for all sentences ϕ .
 - **(coherent limit)** \mathbb{P}_{∞} should be a coherent probability distribution, i.e. obey laws like $\mathbb{P}_{\infty}(A \wedge B) + \mathbb{P}_{\infty}(A \vee B) = \mathbb{P}_{\infty}(A) + \mathbb{P}_{\infty}(B)$
 - **(non-dogmatism)** If $\Gamma \nvdash \phi$ then $\mathbb{P}_{\infty}(\phi) < 1$, and if $\Gamma \nvdash \neg \phi$ then $\mathbb{P}_{\infty}(\phi) > 0$.

Progress

Our paper (http://arXiv.org/abs/1609.03543/), shows that these properties are:

Related: A single property, the **Garrabrant Induction Criterion** (GIC), implies them all.

Feasible: We have a logical induction algorithm, "LIA2016", that satisfies the GIC.

Extensible: Many further desirable properties follow from **GIC**, and are hence satisfied by **LIA2016**.

- Formalizing logical induction
 - Definitions
 - Basic properties
- 2 Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- 5 Conclusions (PowerPoint)

Conservatism

• (uniform non-dogmatism) For any computably enumerable sequence of sentences $\{\phi_n\}_{n\in\mathbb{N}}$ such that $\Gamma\cup\{\phi_n\}_{n\in\mathbb{N}}$ is consistent, there is a constant $\varepsilon>0$ such that for all n,

$$\mathbb{P}_{\infty}(\phi_n) \geq \varepsilon.$$

• (Occam bounds) There exists a fixed positive constant C such that for any sentence ϕ with Kolmogorov complexity $\kappa(\phi)$ in a prefix-free encoding, if $\Gamma \nvdash \neg \phi$, then

$$\mathbb{P}_{\infty}(\phi) \geq C2^{-\kappa(\phi)}$$
,

and if $\Gamma \nvdash \phi$, then

$$\mathbb{P}_{\infty}(\phi) \leq 1 - C2^{-\kappa(\phi)}$$
.

(definition: efficiently computable)

We say that a sequence of statements (or other objects) $\overline{\phi}$ is **efficiently computable (e.c.)** if there exists a Turing machine M such that M(n) generates the output ϕ_n in time polynomial in n.

An e.c. sequence ϕ_n can be thought of as a sequence of T/F questions that is relatively easy to generate, but which can be arbitrarily difficult to answer deductively as n grows. In other words, think:

e.c. statements

 \leftrightarrow

easy to state, hard to verify

Henceforth, $\overline{\phi}$ will always denote an e.c. sequence of sentences.

(definition: efficiently computable)

Example (statements that are hard to verify). Say f is any computable function. Fix an encoding \underline{f} of f. By the parametric diagonal lemma [Boolos, 1993; p.53], there is a sentence G(-) with one free variable such that for all n, Γ proves

 $G(\underline{n}) \leftrightarrow$ "There is no proof of $\underline{G(\underline{n})}$ in $\leq \underline{f(\underline{n})}$ characters."

Then the sequence $\phi_n := G(\underline{n})$ is log-time generable: writing down ϕ_n only requires substituting the string \underline{n} into G(-), which takes $\mathcal{O}(\log(n))$ time. But if Γ is consistent, the length of the shortest proof of ϕ_n is at least f(n). Nonetheless, we have...

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- Conclusions (PowerPoint)

Provability induction

• (provability induction) For any e.c. sequence $\overline{\phi}$ of provable statements ϕ_n ,

$$\lim_{n\to\infty}\mathbb{P}_n(\phi_n)=1.$$

In particular, $\overline{\mathbb{P}}$ can be seen to "outpace deduction" by a factor of f for any computable function f.

An analogy: Ramanujan vs Hardy. Imagine the ϕ_n are output by a heuristic algorithm that generates mathematical facts without proofs, similar in style to S. Ramanujan. Then $\overline{\mathbb{P}}_n$ resembles G.H. Hardy: he can only verify those results very slowly using the proof system Γ , but after enough examples, he begins to trust Ramanujan as soon as he speaks, even if the proofs of Ramanujan's later conjectures are impossibly long.

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- Conclusions (PowerPoint)

Learning pseudorandom frequencies

In the paper, we define a notion of *pseudorandom* with respect to a particular runtime class $\mathcal{O}(r(n))$ depending on the runtime of $\overline{\mathbb{P}}$. Black-boxing those for now, we have:

• (Learning pseudorandom frequencies) For any e.c. sequence of decidable sentences $\overline{\phi}$ that is pseudorandom with frequency p over the class of $\mathcal{O}(r(n))$ -time divergent weightings,

$$\lim_{n\to\infty}\mathbb{P}_n(\phi_n)=p.$$

• (Learning pseudorandom trends) A stronger version of the above, where the frequency can vary over time.

Learning pseudorandom frequencies

Note that learning pseudorandom frequencies

- is not that hard to satisfy on its own, but
- is trickier to get along with coherence (i.e., \mathbb{P}_{∞} being a probability distribution).

Learning provable relationships

• (Learning exclusive/exhaustive relationships) Let $\overline{\phi}^1, \dots, \overline{\phi}^k$ be k e.c. sequences of sentences such that for each n, Γ proves that $\phi_n^1, \dots, \phi_n^k$ are exclusive and exhaustive (i.e. exactly one of them is true). Then

$$\lim_{n\to\infty} \left(\mathbb{P}_n(\phi_n^1) + \cdots + \mathbb{P}_n(\phi_n^k) \right) = 1$$

 (Learning affine relationships) A stronger version of the above, holding for every coherence relationship expressible as an affine combination of probabilities.

(definition: timely manner)

Given any sequences \overline{x} and \overline{y} , we write

$$x_n \gtrsim_n y_n$$
 for $\left(\lim_{n \to \infty} x_n - y_n = 0\right)$,
 $x_n \gtrsim_n y_n$ for $\left(\liminf_{n \to \infty} x_n - y_n \ge 0\right)$, and
 $x_n \lesssim_n y_n$ for $\left(\limsup_{n \to \infty} x_n - y_n \le 0\right)$.

Given e.c. sequences of statements $\overline{\phi}$ and probabilities \overline{p} , we say that $\overline{\mathbb{P}}$ assigns \overline{p} to $\overline{\phi}$ in a **timely manner** if

$$\mathbb{P}_n(\phi_n) \approx_n p_n$$

• (introspection) For any efficiently computable sequence of statements ϕ_n , any interval (a,b), any e.c. sequence of positive rationals $\delta_n \to 0$, there exists a sequence $\varepsilon_n \to 0$ such that for all n:

$$\mathbb{P}_{n}(\phi_{n}) \in (a + \delta_{n}, b - \delta_{n}) \implies \mathbb{P}_{n}(\lceil \mathbb{P}_{n}(\phi_{n}) \in (a, b)\rceil) > 1 - \varepsilon_{n} \\
\mathbb{P}_{n}(\phi_{n}) \notin (a - \delta_{n}, b + \delta_{n}) \implies \mathbb{P}_{n}(\lceil \mathbb{P}_{n}(\phi_{n}) \notin (a, b)\rceil) < \varepsilon_{n}$$

• (paradox resistance) Fix a rational $p \in (0,1)$, and use Gödels diagonal lemma to define a sequence of "Liar sentences" L_n satisfying

$$\Gamma \vdash L_n \leftrightarrow \lceil \mathbb{P}_n(L_n) \leq p \rceil$$
.

Then

$$\overline{\mathbb{P}}_n(L_n) \approx_n p.$$

• (introspection) For any efficiently computable sequence of statements ϕ_n , any interval (a,b), any e.c. sequence of positive rationals $\delta_n \to 0$, there exists a sequence $\varepsilon_n \to 0$ such that for all n:

$$\mathbb{P}_{n}(\phi_{n}) \in (\mathbf{a} + \delta_{n}, \mathbf{b} - \delta_{n}) \implies \mathbb{P}_{n}(\lceil \mathbb{P}_{n}(\phi_{n}) \in (\mathbf{a}, \mathbf{b})\rceil) > 1 - \varepsilon_{n} \\
\mathbb{P}_{n}(\phi_{n}) \notin (\mathbf{a} - \delta_{n}, \mathbf{b} + \delta_{n}) \implies \mathbb{P}_{n}(\lceil \mathbb{P}_{n}(\phi_{n}) \notin (\mathbf{a}, \mathbf{b})\rceil) < \varepsilon_{n}$$

• (paradox resistance) Fix a rational $p \in (0,1)$, and use Gödels diagonal lemma to define a sequence of "Liar sentences" L_n satisfying

$$\Gamma \vdash L_n \leftrightarrow \lceil \mathbb{P}_n(L_n) \leq p \rceil$$
.

Then

$$\overline{\mathbb{P}}_n(L_n) \approx_n p.$$

• (belief in consistency) Let con(n) be the sentence 'There is no proof of contradiction (\bot) from Γ using n or fewer symbols'. Then

$$\lim_{n\to\infty}\overline{\mathbb{P}}_n(\operatorname{con}(n))=1.$$

• (belief in future consistency) In fact, for any encoding \underline{f} of a computable function $f: \mathbb{N} \to \mathbb{N}$,

$$\lim_{n\to\infty} \overline{\mathbb{P}}_n(\operatorname{con}(\underline{f}(n))) = 1.$$

For example, f(n) could be $n^{n^{n}}$, or even Ack(n, n).

• (belief in consistency) Let con(n) be the sentence ^rThere is no proof of contradiction (\perp) from Γ using n or fewer symbols . Then

$$\lim_{n\to\infty}\overline{\mathbb{P}}_n(\operatorname{con}(n))=1.$$

• (belief in future consistency) In fact, for any encoding \underline{f} of a computable function $f: \mathbb{N} \to \mathbb{N}$,

$$\lim_{n\to\infty} \overline{\mathbb{P}}_n(\operatorname{con}(\underline{f}(n))) = 1.$$

For example, f(n) could be $n^{n^{n^n}}$, or even Ack(n, n).

• (Trust in future beliefs) For any computable function f(n) > n and efficiently computable sentences ϕ_n , we have a result roughly interpretable as saying that a GI's current beliefs about the sequence, conditioned on its future beliefs, agree with its future beliefs:

$$\mathbb{P}_n(\phi_n \mid "\underline{\mathbb{P}}_{f(n)}(\phi_n) \geq \underline{p_n}") \gtrsim_n p_n.$$

The precise statement (see paper for definitions) looks like this:

$$\mathbb{E}_n([\underline{\phi_n}] \cdot \underline{\mathsf{Ind}}_{\delta_n}(\underline{^{"}}\underline{\mathbb{P}}_{\underline{f(\underline{n})}}(\underline{\phi_n}) \geq \underline{\rho_n}")) \gtrsim_n p_n \cdot \mathbb{E}_n(\underline{^{"}}\underline{\mathbb{P}}_{\underline{f(\underline{n})}}(\underline{\phi_n})").$$

Other properties

- Well-behaved conditional credences, the analog of conditional probabilities;
- Well-behaved logically uncertain variables, the analogues of classical random variables;
- Well-behaved expected value operators for logically uncertain variables;
- Relationship to universal semi-measures;
- · · · (check out the paper)

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- 3 The Garrabrant induction criterion
- 4 LIA2016
- 5 Conclusions (PowerPoint)

A market $\overline{\mathbb{P}}$ is said to satisfy the Garrabrant induction criterion relative to a deductive process \overline{D} if there is no efficiently computable trader \overline{T} that (plausibly) exploits $\overline{\mathbb{P}}$ relative to \overline{D} . A market $\overline{\mathbb{P}}$ that meets this criterion is called a Garrabrant inductor.

A **deductive process** \overline{D} is a computable nested sequence $D_1 \subseteq D_2 \subseteq D_3 \dots$ of finite sets of sentences $D_n \subset \mathcal{S}$, interpreted as theorems that have been proven by day n. We write D_{∞} for the union $\bigcup_n D_n$.

A trader \overline{T} is a sequence of things called *n*-strategies T_n , each of which is a formula for buying and selling a linear combination of "shares" of sentences $T_n(\mathbb{P}_{\leq n})$ in response to the history of market prices $\mathbb{P}_{\leq n}$ on day n.

A market $\overline{\mathbb{P}}$ is said to satisfy the Garrabrant induction criterion relative to a deductive process \overline{D} if there is no efficiently computable trader \overline{T} that (plausibly) exploits $\overline{\mathbb{P}}$ relative to \overline{D} . A market $\overline{\mathbb{P}}$ that meets this criterion is called a Garrabrant inductor.

A **deductive process** \overline{D} is a computable nested sequence $D_1 \subseteq D_2 \subseteq D_3 \dots$ of finite sets of sentences $D_n \subset \mathcal{S}$, interpreted as theorems that have been proven by day n. We write D_{∞} for the union $\bigcup_n D_n$.

A **trader** \overline{T} is a sequence of things called *n*-strategies T_n , each of which is a formula for buying and selling a linear combination of "shares" of sentences $T_n(\mathbb{P}_{\leq n})$ in response to the history of market prices $\mathbb{P}_{\leq n}$ on day n.

A market $\overline{\mathbb{P}}$ is said to satisfy the **Garrabrant induction criterion** relative to a *deductive process* \overline{D} if there is no efficiently computable *trader* \overline{T} that *(plausibly) exploits* $\overline{\mathbb{P}}$ relative to \overline{D} . A market $\overline{\mathbb{P}}$ that meets this criterion is called a **Garrabrant inductor**.

A trader's (cash and stock) holdings on day n from trading against $\overline{\mathbb{P}}$ is the sum $H_n := \sum_{i \leq n} T_n(\mathbb{P}_{\leq n})$.

A trader \overline{T} (plausibly) exploits a market $\overline{\mathbb{P}}$ if, as $n \to \infty$, the bounds on the value of its holdings H_n determinable from D_n via boolean logic only are bounded below but not bounded above.

A market $\overline{\mathbb{P}}$ is said to satisfy the Garrabrant induction criterion relative to a deductive process \overline{D} if there is no efficiently computable trader \overline{T} that (plausibly) exploits $\overline{\mathbb{P}}$ relative to \overline{D} . A market $\overline{\mathbb{P}}$ that meets this criterion is called a Garrabrant inductor.

Example. Say $\phi=$ "1+1=2" and $\chi=$ "2+2=4", and suppose you're a trader whose your holdings on day 5 are

$$-\mathbf{1}+\phi+\chi$$

representing -\$1 of cash, one share of ϕ and one share of χ .

- If $D_5 = \emptyset$, the current bounds on your worth are [-1, 1].
- If $D_5 = {\phi}$, your bounds are [0, 1].
- If $D_5 = {\phi \wedge \chi}$, your bounds are [1, 1] (the \wedge is respected)
- If $D_5 = {\forall \mathbf{x} : \phi}$, your bounds are only [-1, 1] (the quantifier \forall is not respected)

Time permitting, use whiteboard to elaborate and/or field questions.

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- 5 Conclusions (PowerPoint)

The basic ideas behind **LIA2016** are these:

- We fix a (redundant) computable enumeration of all e.c. traders, and define two functions:
- TradingFirm watches a market $\mathbb{P}_{\leq n}$ and assembles performance-budgeted versions of those traders together, yielding a non-e.c. "supertrader" \overline{T} who exploits $\overline{\mathbb{P}}$ iff $\overline{\mathbb{P}}$ is exploitable.
- MarketMaker looks at any trading strategy T_n and sets prices so that strategy can't make more than 2^{-n} from trading with them (no matter how stocks are valued).

Given the deductive process \overline{D} , the shape of the recursion looks like this: LIA $_{\leq 0}$:= (), and

$$\mathtt{LIA}_n := \mathtt{MarketMaker}_n \big(\mathtt{TradingFirm}_n^{\overline{D}} \big(\mathtt{LIA}_{\leq n-1} \big), \mathtt{LIA}_{\leq n-1} \big),$$

After enough lemmas and definitions, the main existence result looks like this:

Theorem (\overline{LIA} is a Logical Inductor)

The sequence of belief states $\overline{\text{LIA}}$ satisfies the Garrabrant induction criterion relative to \overline{D} , i.e., $\overline{\text{LIA}}$ is not exploitable by any e.c. trader relative to the deductive process \overline{D} .

Proof.

If any e.c. trader exploits $\overline{\text{LIA}}$ (relative to \overline{D}), then so does the trader $\overline{F}:=(\text{TradingFirm}_n^{\overline{D}}(\text{LIA}_{\leq n-1}))_{n\in\mathbb{N}^+}$. But \overline{F} does not exploit $\overline{\text{LIA}}$. Therefore no e.c. trader exploits $\overline{\text{LIA}}$.

Time permitting, use whiteboard to elaborate and/or field questions.

The proofs of all our nice properties involve cooking up some e.c. trader that would exploit you otherwise. E.g.:

Proof sketch of Convergence.

Suppose for a contradiction that the limit

$$\mathbb{P}_{\infty}(\phi) := \lim_{n \to \infty} \mathbb{P}(\phi)$$

does not exist. Then for some rationals $p \in [0,1]$ and $\varepsilon > 0$, we have $\mathbb{P}_n(\phi) and <math>\mathbb{P}_n(\phi) > p + \varepsilon$ infinitely often, so a trader can make ∞ buy buying shares for less than $p - \varepsilon$, waiting for a chance to sell then for $p + \varepsilon$, and repeating (details in paper). \square

Proof sketch of Non-dogmatism.

Suppose for a contradiction that $\Gamma \nvdash \neg \phi$, but $\mathbb{P}_{\infty}(\phi) = 0$. (The other case is similar.) A trader can buy one share of ϕ at or below every price point 2^{-k} , never spending more than \$1, but accruing an even growing number of ϕ -shares $k \cdot \phi$. Since we never have $D_n \vdash \phi$, those shares are plausibly worth \$k, which $\to \infty$ as $n \to \infty$, contradicting the GIC. Hence $\mathbb{P}_{\infty}(\phi)$ must be bounded away from zero.

See the paper for more rigorous details, and many more properties/proofs:

http://arXiv.org/abs/1609.03543/
https://intelligence.org/files/LogicalInduction.pdf
(The latter is being updated more frequently.)

- Formalizing logical induction
 - Definitions
 - Basic properties
- Properties of Garrabrant Inductors / LIA2016
 - Conservatism
 - (definition: efficiently computable)
 - Provability induction
 - Learning pseudorandom frequencies
 - Learning provable relationships
 - (definition: timely manner)
 - Self-reflective properties
 - Other properties
- The Garrabrant induction criterion
- 4 LIA2016
- 5 Conclusions (PowerPoint)

Conclusions

$\textbf{Beamer} \rightarrow \textbf{PowerPoint}$