ELECTRIC NETWORK SYNTHESIS

SHAOWEI LIN, LUKE OEDING, BERND STURMFELS

This document summarizes our understanding of the problems presented by Rudolf Kalman
in his lecture in the Berkeley Algebraic Statistics Seminar on October 26, 2011. We consider
electrical networks which can be defined mathematically as follows. An RLC network is an
undirected connected graph I' = (V, E) satisfying the following properties:

(1) There are no self loops but parallel edges are allowed.

(2) Two of the nodes are distinguished.

(3) Every edge is labeled by an unknown real parameter times either s7!, s° or s! where
s is an indeterminate.

In electrical network theory [2,3], the edges of I" correspond to resistors (R), inductors (L) and
capacitors (C) that attain certain positive real values, and we want to study the impedance
(defined below) between the two distinguished nodes. T'wo basic questions are:

e Given I'; what is the impedance between the two distinguished nodes? (Prediction)
e Given an impedance function, does there exist a network with that impedance, and
if so what is the minimal such network? (Synthesis)

If Z is the impedance of a component (or network), then ¥ = % is called the admittance.
Consider the simplest network with precisely two components of the same type. There are
only two graphs — either a loop (two components in parallel) or a chain (two components
in series). There are only two rules for how to compute the impedance Z of the network,
depending on the type of component. For resistors and inductors impedance adds in series;
Z = Z1 + Zs, and admittance adds in parallel; % = %1 + %2. For capacitors the reverse is
true, namely the impedance of capacitors adds in parallel and the admittance adds in series.
A network is series-parallel if it is inductively constructed from sub-networks that are all
either in series or parallel. Such networks are nice because their impedance can be computed
inductively. However, most networks (including our Example 2 below) are not series-parallel.
In that general case, we define the impedance between the two distinguished nodes is the
sum of the impedance of each path in the graph from one distinguished node to the other. As
we shall see, this infinite sum can be written conveniently as a rational generating function.
Consider any graph I' = (V| E) satisfying conditions (1)-(3) above. Set V' ={1,2,...,d},
assume the distinguished nodes are 1 and 2, and represent I' by its Laplacian matrix Ar.
This is the symmetric d X d-matrix of rank d — 1 whose columns sum to zero and whose off-
diagonal entries are the labels of the edges. By the Matrix Tree Theorem, all (d—1) x (d—1)-
subdeterminants of Ar are equal up to sign. Explicitly, that common comaximal minor fr(s)
is the sum over all spanning trees T' of the products of the edge labels in T. Thus fr(s)
is a Laurent polynomial in s whose coefficients are sums of monomials in the |E| positive
real parameters. Let I'[l = 2] denote the graph obtained from I' by identifying the two
distinguished nodes. Thus I'[1 = 2| is the graph on d — 1 nodes whose Laplacian Arji—g) is
obtained from Ar by adding the first and second rows. We write frji—g(s) for the Laurent

polynomial that is obtained by taking any comaximal subdeterminant of Ar The impedance
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of the network I' is the rational function

ar(s) fr[1:2](3)

2r(s) = —= = ==

br(s) fr(s)

Here ar(s) and br(s) are relatively prime polynomials in s. The pair of nonnegative integers

(Oéfa BF) = (degrees (&F)> degrees(br))

is called the bidegree of the network I'.

The set of all rational functions with that given numerator degree and denominator degree
is the projective space Por™Pr+l The space of parameters for the network I' is RY,. What
we are interested in is the polynomial map that takes the parameters to the impedance:

Zr + RE — Portirtl edge weights — ar(s)
bF(S)

The network I' is minimal if the map Zr is finite-to-one. A necessary condition for minimality
is that |E| = ar + fr + 1. Here is the problem we wish to solve for any fixed bidegree (a, /3):

Problem 1. (1) Compile the finite list of all graphs T' satisfying the necessary condition

(2) Among all networks T' which do not have series-parallel reductions to simpler ones,
identify those that are minimal and compute their impedances zp(s).

(3) For each minimal network T, characterize the set Zr(RE), i.e. the image of the
orthant of positive parameter values, as a semi-algebraic subset of Per+Ar+l,

(4) By intersecting the various Zr(RE,), determine the stratification of the space Pi{fﬁr“
of positive rational functions according to sets of networks that realize them.

(5) For each minimal T', find the algebraic degree of the map r, and compute the inverse
as an algebraic function. (This inverse is rational if the algebraic degree is 1).

(6) Conjecture: The inverse to Zr is rational if and only if T' is series-parallel.

Example 2. Consider the following RLC network I' with real parameters ry, 7o, 73,1, c. The
white nodes represent the distinguished nodes 1 and 2. The impedance of I" is given by

ay = c(ry+mr)
as5% + a1s + ag ar = c+ry(r +12)
2r(s) = bys® + b1s + by ag = l(ri+ro+r3)
by = c(rirg +rors +1ri73)
b1 = Cl(TQ —|—7“3) + ri7raors

b() = lT‘l(TQ + 7“3)

These formulas specify the map Zp : R® — P°, (rq,r9,73,1,¢) — (as : ay : ag : by : by : by).
The graph of this map is the variety defined by the 2 x 2-minors of the matrix

(05} aq Qo bQ bl bO
c(ri+ry) c4rs(ri4re) U(ri+rotrs) c(rire+rors+rirs)  cl(re+rs)+rirars lry(ro+rs)

For fixed generic values of as,aq, ag, be, by, by, these equations have precisely four complex
solutions, so the algebraic degree of the map Zr is 4. This means that the network I" is
minimal, and we can express the inverse to Zr in radicals using Cardano’s formula. O
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In the applications of [113], the edges labeled by some cs, [s~! and 7 correspond to electrical
components with capacitance C' = ¢, inductance L = [~! and resistance R = r~! respectively.
Here we care about the inverse to Zr only on the semi-algebraic set corresponding to positive
parameter values, and our Problem 1 (2) is aimed at characterizing that inversion domain as
a semi-algebraic set. Rudolf Kalman pointed out that the resultant and its Sylvester matrix
of the two polynomials ar(s) and br(s) should play a special role in that characterization.
He mentioned that the physically interesting cases are when |o— /3| < 1, the total number of
capacitors and inductors equals max(«, ), and the coefficients of ar(s) and br(s) are positive.
Following are two Theorems™ from Professor Kalman’s talk, which we should regard as true
for bidegree (2,2), with proof by exhaustion, and as conjectures for larger bidegrees.

Theorem 3. The following are equivalent for a RLC network ¥ with associated graph I's:
(1) Ty is simple series parallel
(2) The resultant Ress(a,b) is a product of monomials in the parameters.

(3) Each coordinate of the inverse to Z is expressible as a ratio of “invariants” (entries
of the adjoint of the Sylvester matriz).

In Example 2, the Sylvester resultant of the two quadrics equals, in parameters,
Res(a,b) = lc(leryrs 4 rirors 4 r3le + r2r3)?.

This is not a product of monomials in 7, [, ¢ because I is not series parallel. Note that simple
series parallel is the condition that the maximum length of an elementary cycle I'y; is 2. We
say that z(s) is realizable if z(s) = zp(s) for some simple series-parallel network T'.

Theorem 4. Let z(s) be a rational function of bidegree (2,2) with positive coefficients. Then
Res(a,b) > 0 and agby — asby > 0 iff Z is RC-realizable,
Res(a,b) > 0 and apby — asby < 0 iff Z is RL-realizable.
The general realizability question has been solved also.

Theorem 5. A given impedance function z(s) is RC-realizable or RL-realizable by a simple
series-parallel network if and only if all roots of a(s) and b(s) are real and they interlace.

Note that Lemma 5 [4] tells us that the interlacing condition on a(s) and b(s) are satisfied
if and only if the Bezoutian matrix is positive definite.

Conclusion: We are looking for a grad student who will solve Problem 1 for (o, 8) = (3, 3).
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